Dissipative Localised Structures for the Complex Discrete Ginzburg–Landau Equation
نویسندگان
چکیده
The discrete complex Ginzburg-Landau equation is a fundamental model for the dynamics of nonlinear lattices incorporating competitive dissipation and energy gain effects. Such mechanisms are particular importance study survival/destruction localised structures in many physical situations. In this work, we prove that dissipative solitonic waveforms persist significant times by introducing dynamical transitivity argument. This argument based on combination notions ``inviscid limits'' ``continuous dependence solutions their initial data'', between system its Hamiltonian counterparts. Thereby, it establishes closeness lattice to those conservative ideals described Discrete Nonlinear Schr\"odinger Ablowitz-Ladik lattices. holds when conditions systems chosen be sufficiently small suitable metrics values or strengths. Our numerical findings excellent agreement with analytical predictions bright, dark even Peregrine-type waveforms.
منابع مشابه
Dissipative solitons of the discrete complex cubic–quintic Ginzburg–Landau equation
We study, analytically, the discrete complex cubic–quintic Ginzburg–Landau (dCCQGL) equation with a non-local quintic term. We find a set of exact solutions which includes, as particular cases, bright and dark soliton solutions, constant magnitude solutions with phase shifts, periodic solutions in terms of elliptic Jacobi functions in general forms, and various particular periodic solutions. ...
متن کاملDISCRETE SIZE AND DISCRETE-CONTINUOUS CONFIGURATION OPTIMIZATION METHODS FOR TRUSS STRUCTURES USING THE HARMONY SEARCH ALGORITHM
Many methods have been developed for structural size and configuration optimization in which cross-sectional areas are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. This paper proposes two efficient structural optimization methods based on the harmony search (HS) heuristic algorithm that treat both discret...
متن کاملDissipative Solutions for the Camassa–holm Equation
has been extensively studied since the first systematic analysis in [5, 6]. Part of the attraction is the surprising complexity of the equation and its deep and nontrivial properties. To list a few of its peculiarities: The Camassa–Holm equation has a bi-Hamiltonian structure [16], it is completely integrable [5], and it has infinitely many conserved quantities [5]. Here we study the equation w...
متن کاملinvestigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
The dissipative linear Boltzmann equation
We introduce and discuss a linear Boltzmann equation describing dissipative interactions of a gas of test particles with a fixed background. For a pseudo-Maxwellian collision kernel, it is shown that, if the initial distribution has finite temperature, the solution converges exponentially for large–time to a Maxwellian profile drifting at the same velocity as field particles and with a universa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Science
سال: 2023
ISSN: ['0938-8974', '1432-1467']
DOI: https://doi.org/10.1007/s00332-023-09904-2